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1. Introduction

Azaindole ring systems have attracted considerable interest
from the chemistry community as they represent promising
building blocks with potential applications in the field of
pharmaceuticals, natural product synthesis and also diverse
key synthetic intermediates. Azaindoles can be considered
as bioisosteres of an indole moiety with variation of the
position of the nitrogen atom on the benzene core. In this
paper, we wish to report the synthesis and reactivity of 4-,
5- and 6-azaindoles 1-3 updated from 2000 (Fig. 1).! Organo-
metallic methods for the synthesis and functionalization of
azaindoles were recently reviewed.? The synthesis and reac-
tivity of the 7-azaindoles 4 have been already reported in
a previous review.’
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Iz __
Iz __

Figure 1. Structures of 4-, 5-, 6- and 7-azaindoles 1-4.

Contrary to their 7-azaindole analogues that have been
widely studied for their luminescence properties as inor-
ganic complexes, the 4-, 5- and 6-azaindoles have been far
less studied for their inorganic properties.

The photophysical properties of 6-azaindole 3 and 6-
azatryptophan have been studied and a strong dependence
on the pH has been pointed out. The biosynthetic incorpora-
tion of 6-azatryptophan into the YO9W mutant of rat cal-
modulin allowed protein structural studies via fluorescence
from this protein.*

A novel stable organic radical, 2-(4-azaindol-2-yl)-4.,4,5,5-
tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-oxide 5,
was synthesized with the aim of studying its magnetic prop-
erties (Fig. 2).%
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Figure 2. Compound 5.

2. Synthesis of 4-, 5- and 6-azaindoles

Miscellaneous synthetic methods have been reported for
the preparation of substituted indoles.,® but relatively few
have been applied to the preparation of substituted 4-, 5-
and 6-azaindoles.” This fact could be explained by the
electron-deficient nature of the pyridine ring. The electron-
ics of the m-system are altered in such a way that many
classical indole formation methods do not work or are not
efficient (e.g., Fischer indolization). Besides the classical
methods, alternative synthetic strategies to reach 4-, 5- and

6-azaindole derivatives have been developed and reported
in the literature.

2.1. Reissert synthesis’®

Commercially available 4-methyl-3-nitropyridine 6 was
treated with diethyl oxalate in the presence of sodium eth-
oxide providing intermediate 7. Subsequent hydrogenation
in a Parr apparatus allowed the intramolecular cyclization,
generating ethyl 6-azaindole-2-carboxylate 8. Further func-
tionalization was performed on 8 to provide compound 9,
which was evaluated for its potential activity as a nicotinic
ligand (Scheme 1).%
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Scheme 1. Reagents and conditions: (a) diethyl oxalate, EtONa/EtOH, rt,
2.5 h, 42%; (b) H,, Pd/C 10%, CH,Cl,, 35 psi, 1t, 72 h, 84%.

This experimental procedure was repeated recently in two
patents with miscellaneous applications such as access to
new glycogen phosphorylase inhibitors (e.g., 10) with thera-
peutic application for diabetes” and human casein kinase 1
epsilon inhibitors for the treatment of central nervous system
diseases (e.g., 11) (Fig. 3).'°
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Figure 3. Compounds 10 and 11.

A general large-scale synthesis of 2-alkyl-7-methoxy-
6-azaindoles from 2-methoxy-3-nitro-4-formylpyridine 12
was described by Leftheris and co-workers (Scheme 2).!!
Aldehyde 12 was subjected to a Henry reaction in the pres-
ence of EtNO,, followed by dehydration, affording nitro-
alkene 13 in good yield. The catalytic hydrogenation of
13 afforded the desired 6-azaindole 14 in 66% yield. The
same procedure was applied to 3-nitro-4-formylpyridine.
In this case, the reduction of nitroalkene 15 gave a mixture
of the desired indole 16 and N-hydroxy-6-azaindole 17 (ratio
3:1), which was easily reduced by zinc in AcOH.

2.2. Batcho-Leimgruber synthesis

5-Azaindole 2 was prepared through the Batcho-Leim-
gruber synthesis’>® by Shah and co-workers!? as a precursor
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Scheme 2. Reagents and conditions: (a) EtINO,, KF, 18-crown-6, i-PrOH, rt,
16 h, 97%; (b) Ac,0, AcONa, KF, 18-crown-6, rt, 64 h, 89%; (c) H,, Pd/C
10%, EtOH, AcOH, EtOAc, rt, 3 h, 14=66%; (d) Zn, AcOH, reflux, 3 h,
16=94%.

of bicyclic piperidine 18, which was evaluated for its biolog-
ical properties as a CCRS5 antagonist (Scheme 3).
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Scheme 3. Reagents and conditions: (a) DMF/DMA, DMEF, 90 °C; (b) H,,
Pd/C 10%, EtOH, 60 °C.

In the same manner, 7-methoxy-6-azaindole 22 could be
obtained from 2-chloro-4-methyl-3-nitropyridine 19. Start-
ing from 22, the synthesis of aza-C-nucleoside immucillins,
as potential inhibitors of human purine nucleoside phosphor-
ylase (PNP), was developed (Scheme 4).'> Compound 19
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Scheme 4. Reagents and conditions: (a) MeONa/MeOH, reflux, 2 h, 98%;
(b) DMF/DMA, DMF, 130 °C, 18 h, 99%; (c) H,, Pd/C 10%, EtOH,
15 psi, rt, 15 min, 89%; (d) NaH, BOMCI, THF, rt, 2 h, 72%; (e) Bra,
CHCl;, <10°C, 74%; (f) (i) n-BuLi, Et,0, —78 °C, (ii) imine, Et,0,
0°C, 69%; (g) HCI, MeOH, reflux, 48 h, 9%.

was subjected to SNy, in the presence of MeONa to provide
2-methoxypyridine 20. Subsequent treatment with DMF/
DMA gave the enamine 21, which upon hydrogenation
allowed the cyclization reaction to afford 22. N-BOM pro-
tection of 22, followed by regioselective bromination in
the C-3 position, provided compound 23 in 46% overall
yield (five steps). Lithium/halogen exchange on 23 with
n-BuLi in THF at —78 °C afforded a lithiated species, which
reacted immediately with iminoribitol 24 to give adduct 25
in 69% yield. Acid hydrolysis afforded the immucillin
analogue 26 in 9% yield.

A structure—activity relationship study in the search for new
5-HT, receptor agonists was dedicated to the synthesis of
indole bioisosteres, 6-azaindole and 4-azaindole. These de-
rivatives were obtained following a modification of the
Batcho-Leimgruber procedure (Scheme 5).'4
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Scheme 5. Reagents and conditions: (a) DMF/DMA, DMEF, 110 °C, over-
night, quant; (b) H,, 10% Pd/C, EtOH, 40 psi, 24 h, rt, 60%; (c) MeONa/
MeOH, 1-methyl-4-piperidone, 75 °C, overnight, 86%; (d) (i) H,, 10%
Pd/C, EtOH, 60 psi, 40 °C, 24 h, 80%, (ii) R'cocl, pyridine, 1t, 4 h, 77%.

Treatment of 2-amino-4-methyl-5-nitropyridine 27 with
DMF/DMA in DMF provided the enamine 28. Reductive
cyclization (H,, Pd/C) of 28 afforded the pyrrolo[2,3-c]-
pyridine derivative 29. Condensation of 29 with 1-methyl-
4-piperidone in the presence of freshly prepared MeONa
introduced the 1,2,5,6-tetrahydropyridyl moiety in the C-3
position with concomitant hydrolysis of the amidine group
to afford 30. The desired 5-acylaminopyrrolo[2,3-c]pyridine
analogues 31 were prepared from 30 by hydrogenation of
the olefin, followed by acylation with an appropriate acid
chloride in pyridine. In a similar way, the 5-acylaminopyr-
rolo[3,2-b]pyridine analogues 33 were obtained starting
from the 2-amino-6-methyl-5-nitropyridine 32. Biological
evaluations pointed out the compounds 33a and 33b as
potent and selective 5-HT g receptor agonists.

Wheeler and co-workers have developed an original strategy
to obtain carbon-14-labelled compound 36. The latter
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derivative was prepared from unlabelled 33b (Scheme 6).'3
Oxidation of 33b with OsO,4/NalO,4 in MeOH/H,O yielded
the opened keto derivative 34 in 16% yield. Treatment of
34 with K'*CN afforded the intermediate 35 labelled in
the C-2 position. Finally NaBH, reduction followed by
dehydration gave the radiolabelled 4-azaindole 36 in 47%
yield.

N
PRa f

35 36

Scheme 6. Reagents and conditions: (a) OsO4/NalO4, MeOH/H,0, 63 h, rt,
16%; (b) K'*CN, EtOH, H,0, 3 h, rt; (c) NaBH,, THF/AcOH, 0-5 °C, 2 h;
47% (two steps).

6-Methyl-5-nitropyridin-2-one 37 was converted in a two-
step procedure into the corresponding nitrile 38. The latter
compound was subjected to a Batcho-Leimgruber proce-
dure with concomitant reduction of the nitrile, providing
the S5-aminomethyl-4-azaindole 39. A reaction sequence
led to the final compounds 40 bearing the azaindole moiety,
which were evaluated for their biological properties as
thrombin inhibitors (Scheme 7).'6
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Scheme 7. Reagents and conditions: (a) POBr3;, (CHCl,),, reflux, 4 h; (b)
Zn(CN),, Pd(PPh3),, DMF, 80 °C, 5 h; (¢c) DMF/DMA, DMF, 90 °C, 2 h;
(d) Hp, Pd/C 10%, MeOH/6 M HCl, 16 h; yields not given.

Following the same pathway, 5-aminomethyl-6-azaindole
42 was prepared from 4-methyl-5-nitropyridin-2-one 41.

According to the same methodology, 5-pyridinyl-6-azain-
dole 45 was prepared as precursor of a potential Janus kinase
3 inhibitor (Scheme 8). Starting from 2,3-bipyridine 43, the
nitroalkene 44 was obtained in 52% yield. Cyclization of 44

occurred in the presence of H, and Pd/C to give 45."” Bromi-
nation of 45 in ~-BuOH/H,O0 afforded 46 in 88% yield.

|N\ |N\ Me
|
= | N Me a = | X A N‘Me b
N N
Z>No, Z>No,
43 44
N\ N\
| P | BI'Br
N\ c Z AN
| — | e}
N Z~N N ~N
H H
45 46

Scheme 8. Reagents and conditions: (a) (EtO),CHNMe,, DMF, reflux,
52%; (b) H,, Pd/C, IMS, 81%; (c) NBS, ~-BuOH/H,0, 88%.

The efficiency of the Batcho-Leimgruber indole synthesis
could be enhanced by microwave irradiation. This optimiza-
tion was applied in order to give access to 4-azaindoles. The
presence of Lewis acids reduces considerably the reaction
times, when compared with conventional heating methods.'®

A practically convenient, one-pot process has been reported
for the synthesis of 3-substituted 4- and 6-azaindoles. Con-
densation of 4-methyl-3-nitropyridine 6 or 2-methyl-3-
nitropyridine 46 with DMF/DMA gave 47. The enamines
were reacted with various electrophiles, and then cyclized
via reduction of the nitro group and elimination of dimethyl-
amine (Scheme 9) to afford the 3-substituted azaindoles 48
in 30-69% overall yield."?
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c W TN 48aW=CH,Y=N
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E = -CH,Ph, -CO-Ph, -CH=CH-Ph, -CHy-CHy-N(Me),,...

Scheme 9. Reagents and conditions: (a) DMF/DMA; (b) E*, i-Pr,NEt, diox-
ane, 115 °C, 14 h; (c¢) Fe, MeOH/dioxane/1 N HCI, 115 °C, 3 h, 30-69%
(three steps).

The Batcho-Leimgruber synthesis was recently described
in a Chinese patent for the industrial preparation of 5-
azaindole 2.%°

2.3. Hemetsberger—Knittel synthesis

In 2000, the Hemetsberger—Knittel reaction was used by
Fresneda and co-wrokers?! to build up ethyl 4-methoxy-7-
azaindole-2-carboxylate, representing the first example of
its application to indole bioisosteres. Roy and co-workers*?
decided to investigate the generality of this reaction for the
preparation of a series of methyl 4-substituted 5- or 6-
azaindole-2-carboxylates (Scheme 10). The pyridine-3-
and 4-carboxaldehydes 49 and 52 were treated with methyl
azidoacetate in the presence of MeONa, affording the
azidopyridineacrylates (e.g., 50). Thermal cyclization of
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these intermediates generated the azaindoles 51 and 53 in
fair yields.

R! R! R?
N CHO a N7 XX CO,Me b NS
| - | N - | CO,Me
RZ =z R2 Z 3 R2 Z N
H
49 50 51

R'=H, Cl, Br, OMe, SMe, R2=H, Cl
SO,Me, CFg, i-Pr

R? R!
‘\CHO _ab_ S 1
! — | CcO,Me R'=Br, SMe
H
52 53

Scheme 10. Reagents and conditions: (a) methyl azidoacetate, MeONa/
MeOH, —10 to 0 °C, 2 h, 55-83%; (b) mesitylene, reflux, 1 h, 32-93%.

The promising antiviral activity of BMS-4880432% 54 (Fig. 4)
encouraged Barret and co-workers to develop a new route
to obtain 4,7-dimethoxy-5- or 6-azaindoles (Scheme 11).%*
The investigation was first made on the preparation of both
3- and 4-formylpyridines.

o
N\)N Ph 54
HO | A aorb RO A
— | —
N~ “OMe N~ “OMe
55 56 R = MOM
57 R=TIPS
OMOM OMe OMe
CHO
¢ A MO de A f N
56 - | — | — | CO,Me
N N~ N A~N
H
OMe OMe OMe
58 59 60
OTIPS OMe OMe
c “ ge N0 e A
57 > N l —_— | —> || COzMe
X CHO = = u
OMe OMe OMe
61 62 63

Scheme 11. Reagents and conditions: (a) NaH, MOMCI, DMF, rt, 3 h,
56=92%; (b) TIPSCI, imidazole, DMF, rt, 24 h, 57=quant; (c) (i) MeLi,
DIPA, THF, 0°C, 3 h, (ii) N-formylpiperidine, —40 °C, 2 h; 58=62%,
61=64%; (d) 3N HCI, THF, 50 °C, 3 h, 95%; (e) Mel, K,CO3;, DMF,
50°C, 3h, 59=89%, 62=97%; (f) (i) methyl azidoacetate, MeONa/
MeOH, 30°C, 2h, (ii) xylene, 140°C, 1h, 60=27%, 63=47%; (g)
TBAF, THF, 0 °C to rt, 2 h, 87%.

The formylation of 2,5-dimethoxypyridine was not regiose-
lective, leading to a mixture of the 3- and 4-formyl deriva-
tives in 70% yield (19:81 ratio). The reaction was next
investigated on 5-hydroxy-2-methoxypyridine 55. The lith-
ium-based metalation procedure could be orientated either
in the C-3 position or in the C-4 position by the choice of

an appropriate protecting alcohol group on the C-5 position.
The regioselectivity of the formylation would lead to the
access of either 5- or 6-azaindole derivatives.

The ortho-directing methoxymethyl (MOM) group on 56 led
to the regioselective formation of the 4-formylpyridine 58 as
expected. Acidic cleavage of the MOM group followed by
O-methylation afforded the 4-formyl-2,5-dimethoxypyri-
dine 59. The sterically hindered triisopropylsilyl (TIPS)
ether on 57 led to the C-3 regioisomer 61, pointing out the
importance of a bulky protecting group. In this case, no trace
of the C-4 regioisomer was detected. Desilylation of 61 fol-
lowed by O-methylation afforded 3-formyl-2,5-dimethoxy-
pyridine 62 in good yield. Both regioisomers 59 and 62
were subjected to a classical Hemetsberger—Knittel reaction,
allowing the 6- and 5-azaindoles 60 and 63.

2.4. Bartoli synthesis

The Bartoli cyclization has been extensively studied in the
synthesis of indole derivatives from nitrobenzene derivatives.
This straightforward approach was applied to the synthesis
of 7-substituted 4- and 6-azaindoles (Scheme 12).%
2-Methoxy-3-nitropyridine 64 was treated with 3-4 equiv
of 1 M vinylmagnesium bromide in THF at —78 °C, provid-
ing the desired 7-methoxy-6-azaindole 65 in 20% yield.
Although modest, this yield was similar to that obtained
during the preparation of the corresponding indole. Mis-
cellaneous nitropyridines were engaged to provide 4- and
6-azaindoles in 18-50% yields. As an example, 4-methyl-
3-nitropyridine 6 gave 7-methyl-4-azaindole 66 in 18%
yield. 5-Azaindole was not prepared, but the authors reported
the probable application by the use of an appropriate nitro-
pyridine.

OMe X N\ AN N\ N\
NO, a I | a |
N N~ N ¥ — Z~N
| H NO, H
%
OMe Me Me
64 65 6 66

Scheme 12. Reagents and conditions: (a) 1 M vinylmagnesium bromide
(3—4 equiv), THF, —78 to —20 °C, 8 h, 65=20%, 66=18%.

The same experimental procedure was applied to the synthe-
sis of heteroarylpiperazines (Scheme 13).2% Nitropyridines
67 and 68 (obtained from reaction of the appropriate fluoro
compound with N-Boc-piperazine) were successfully
treated with vinylmagnesium bromide, as described above,
to afford the desired azaindoles 69 and 70, respectively, in
17 and 51% yield. The heteroarylpiperazines 71 and 72
were evaluated for their biological activity as potential brain

Boc Y SO,CsH4(R)

| NN Y-

N Wl 7S

) . N Wl
N = . N — H
— |
wse () @
l/ '}l N
Y Boc H

67 W=N,Y=CH
68 W=CH,Y=N

69 W=N,Y=CH
70 W=CH,Y=N

71 W=N,Y=CH
72 W=CH,Y=N

Scheme 13. Reagents and conditions: (a) 1 M vinylmagnesium bromide,
THE, —40 °C, 40 min, 69=17%, 70=51%.
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5-HT¢ receptor antagonists. Unfortunately, these ligands had
a markedly lower 5-HTg affinity, compared to the reference
compound.

This experimental procedure was applied recently in a patent
relating to the design of 4- and 6-azaindolyloxoacetylpiper-
azines as anti-HIV drugs.?’

2.5. Organometallic syntheses: Pd, Ru, Zr, Ti and Cu

2.5.1. Azaindoles from terminal alkynes. A Sonogashira
reaction of an aminohalopyridine and a terminal alkyne af-
forded the alkynylpyridine, which was cyclized into the
azaindole using a variety of methods. Thus, palladium-
catalyzed reaction of 4-(N-Boc-amino)-3-iodopyridine 73
with alkyne 74 followed by cyclization in the presence of
DBU provided the 5-azaindole derivative 75 as a precursor
of selective Factor Xa inhibitors (Scheme 14).28

N .CBz
NS O}—\ a 7N (\N
& + N N-cBz = \={ I« W)
" NHBoc / N
Boc o
73 74 75

Scheme 14. Reagents and conditions: (a) (i) PACl,(PPhs),, EtzN, Cul, DMF,
100 °C, 1.5 h, (ii) DBU, 50 °C, 30 min, 77%.

In the search for potent Factor VIla inhibitors as anticoagu-
lants, Hu and co-workers have performed a Sonogashira re-
action between 4-(mesylamino)-2-chloro-3-iodopyridine 76
and alkyne 77 followed by basic cyclization (50% NaOH) to
afford the 4-chloro-5-azaindole derivative 78 (Scheme 15).
The chloro atom on the C-4 position was then replaced by
an amino group to reach the desired inhibitor 79.7

COgMe

cl Me

Scheme 15. Reagents and conditions: (a) PACl,(PPhs),, Cul, Et;N, MeCN,
80 °C; (b) 50% NaOH, MeOH, 60 °C, 63% (two steps); (c) AcONH,, PhOH,
105 °C; (d) 6 N HCI, reflux; (e) Hp, Pd(OH),/C, EtOH, 15% (three steps).

In a similar approach,®® the synthesis of 5-amino-4-azain-
dole derivatives was also reported. 3,6-Bis(N-Boc-amino)-
2-bromopyridine 80 was coupled with 81 to reach the alkyne
intermediate, which was cyclized in the presence of TBAF
(Scheme 16). Subsequent removal of the protecting groups
afforded the 2-substituted 5-amino-4-azaindole 82.

COgMe

BocHN_ N Br O NHBoc
L
4

Scheme 16. Reagents and conditions: (a) PACl,(PPhs),, Cul, Et;N, MeCN,
80 °C, 75%; (b) TBAF, THF,; (c) 4 N HCI in dioxane, MeOH, 55% (two
steps).

2.5.2. Heteroannulation using internal alkynes. Larock
and Babu®! reported an easy pathway to the indole nucleus
involving palladium-catalyzed heteroannulation of internal
alkynes and 2-haloanilines. This synthetic strategy was
applied towards the preparation of azaindoles. In the first
studies that were performed by Gronowitz and co-workers, >
2,3-disubstituted 4- and 5-azaindoles were obtained in 20—
40% yields. The reaction conditions were optimized by
Yum and co-workers’* for the specified 7-azaindole. Despite
the limited literature precedent, the interest in this strategy
was enhanced by the choice of PdCl,(dppf) as the reference
catalyst.”! The Larock heteroannulation was, therefore, ap-
plied to more complicated azaindole systems of biological
interest such as the potential GnRH antagonist 6-azaindole
87 (Scheme 17).** Thus, 2-chloro-5-nitropyridine 83 was
converted within nine steps and 23% overall yield into the
target aminopyridine 84. Palladium-catalyzed heteroan-
nulation of 84 and (S)-(4-benzyloxy-3-methylbut-1-ynyl)-
triethylsilane 85 in the presence of PdCl,(dppf), LiCl and
Na,COj; provided the desired 6-azaindole 86 in 62% yield.

Me.,,,
Cl N Me Me i OBn
0 9 steps N I
N~ = Il
|
NO, O N~
4

NH,  SiEts

83 8 85

Scheme 17. Reagents and conditions: (a) PdCl,(dppf)-CH,Cl,, LiCl,
Na,CO3, DMF, 100 °C, 15 h, 62%.
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In the course of a search for new molecules with high affinity
for the human neurokinin-1 (hNK;) receptor, the Larock het-
eroannulation provided access to a new series of 4- or 5-
azaindoles (Scheme 18).3* Todination of the aminopyridines
88-90 followed by palladium-catalyzed coupling with meth-
yl 5-(4-chlorophenyl)pent-4-ynoate afforded the azaindoles
91-93. The in vitro NK; binding results for the azaindole
derivatives 94-96 pointed out the excellent affinity of 4-
and 6-azaindoles. The compound derived from 5-azaindole
did not give good results, which is in accordance with pre-
liminary studies showing the importance of the substituent
in the C-5 position.

CO,Me
W, W,
Y| = a,b YI TN cl
= Z N
NH, N
88 W=N,Y=CCl 91 W=N,Y=CCl
89 W=CH,Y=N 92 W=CH,Y=N
1 OH
NN
N
Ph
W,
Y N
| D Cl
Z N
|
Me
94 W=N,Y=CCl
95 W=CH,Y=N
COzMe
cl Cl
X A
| _ab o \>—®—C|
N~ NH, Pz ”
90 93
OH
NN
N
Ph
Cl
A
| N cl
N~ N
|
Me
96

Scheme 18. Reagents and conditions: (a) 1, Ag,SO,, EtOH, rt, 24 h; (b)
methyl 5-(4-chlorophenyl)pent-4-ynoate, Pd(OAc),, LiCl, Na,CO3;, DMF,
70 °C, 24 h, 20-25%.

The synthesis of tryptophan analogues as potential indol-
amine 2,3-dioxygenase (IDO) inhibitors has also been re-
ported by the reaction of 3-amino-4-iodopyridine 97 and
the propargyl-substituted Schollkopf chiral auxiliary 98 in
the presence of Pd(OAc),, Na,CO;5 and LiCl in DMF at
100 °C to give 99 (42% yield). The 2,3-regioisomer was
also isolated in 15% yield. 6-Aza-p-tryptophan 100 was
obtained in optically active form from 99 for biological
evaluation (Scheme 19).%

Heteroannulation of 3-amino-4-iodopyridines and aromatic
internal alkynes was developed to reach trisubstituted

97 Et3Si H
98 99
ll COy
NH3*
B
N~ N
H
100

Scheme 19. Reagents and conditions: (a) Pd(OAc), (5 mol %), Na,COs,
LiCl, DMF, 100 °C, 42%.

6-azaindoles (Scheme 20). The initial reaction was performed
between 97 and 1-phenylpropyne in order to optimize the
reaction conditions.?*® Different sources of palladium were
used, but the azaindole derivatives 101 and 102 were isolated
in 13% yield (2:1 ratio). The best reaction conditions were
found when 3-(N-benzylamino)-4-iodopyridine 103 was
treated with Pd(OAc), and AcOK. In all cases, two re-
gioisomers 104 and 105 were obtained with a 2.3:1 ratio in
favour of the phenyl substituent in the C-2 position. The
same strategy was used to reach tetracyclic 5-azaindole ana-
logues.>°®

Me Ph
|
= a X
L — [ N—pn o+ N—Me
S = =
N N
NH, H H
97 101 102
Me Ph
[
= b N
X" NHBn Z =N Z N
Bn Bn
103 104 105

Scheme 20. Reagents and conditions: (a) 1-phenylpropyne, Pd(OAc),
(5 mol %), LiCl, AcOK, DMF, 110 °C, 24 h, 101+102=13% (2:1); (b) 1-
phenylpropyne, Pd(OAc), (5 mol %), LiCl, AcOK, DMF, 110 °C, 10 h,
104+105=78% (2.3:1).

Recently, an aminopalladation-reductive elimination proce-
dure was applied by Cacchi for the synthesis of 2,3-disubsti-
tuted 4-azaindole libraries (Scheme 21).3” Starting from the
readily available precursors 106, a large diversity of 2-phenyl-
4-azaindoles 107 were prepared.

R2
N R?
& = 12 |N\ N
R P
NHCOCF3; H
106 107

R' = H, 4-OMe, 4-CO,Et; RZ = Ph, aryl

Scheme 21. Reagents and conditions: (a) R*X or R*OTf (1.5 equiv),
Pd(PPhs),, Cs,CO3, MeCN, 100 °C, 38-96%.

Sonogashira cross-coupling reaction between ethyl (2-bro-
mopyridin-3-yl)carbamate 108 and propargylaldehyde
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diethylacetal afforded alkyne 109.°> The cyclization of 109
occurred in the presence of EtONa at 100 °C to give the
derivative 110. Hydrolysis of the acetal led to 2-formyl-
4-azaindole 111 in 70% yield (Scheme 22).

CH(OE),

N Br L)\/
| N
%
7 NHCO,E NHCOgEt
108

N
AN
T T D—chHoet, wCHO
Z >N Z N
H H

110 11

Scheme 22. Reagents and conditions: (a) propargylaldehyde diethylacetal,
PdCl,(PPh3),, Et3N, Cul, 100 °C, 5 h, 55%; (b) Na, EtOH, 100 °C, 24 h,
52%; (c) 1 M H,SOy, 100 °C, 15 min, 70%.

Knochel and co-workers reported the 5-endo-dig-cyclization
mediated by potassium or cesium bases of 3-amino-2-alky-
nylpyridines obtained by a Sonogashira reaction (Scheme
23).3% As an example, the 2-phenylethynylpyridin-3-yl-
amine 112 afforded the subsequent 2-phenyl-1H-pyr-
rolo[3,2-b]pyridine 113 in 74% yield.

_ Ph
N =z N
A a X \
l = wph
NH, N
112 113

Scheme 23. Reagents and conditions: (a) KH, NMP, rt, 1 h, 74%.

Recently, a two-step sequence of copper-free Sonogashira
alkynylation between alkynes and 3-amino-2-chloropyri-
dines 114 followed by a base-mediated cyclization reaction
of 115 was reported (Scheme 24).3° A catalytic system such
as PdCl,(MeCN), or Pd(OAc), could be used with dppb or
X-Phos as phosphine ligand in the presence of potassium
carbonate as a base. The 4-azaindoles 116 were obtained
in good yields.

s s N
X R' a A R b X
D D O
N~ ~Cl N A N
R2 R?
114 115 116

R" = Bn, cyclopentyl, cyclohexyl, 4-(ethoxycarbonyl)piperidiny!
R2 = Ph, butyl, cyclohexenyl, chloropropyl

Scheme 24. Reagents and conditions: (a) terminal alkynes, PdCl,(MeCN),,
X-Phos, K,CO3, MeCN, 60 °C, 16 h or terminal alkynes, Pd(OAc),, dppb,
K,CO3, MeCN, 80 °C, 16 h; (b) 1 M -BuOK, THF, rt, 83-91% (two steps).

In a similar way, a DBU-mediated cyclization of o-(N-Boc-
amino)alkynylpyridines was reported, affording 4-, 5- and 6-
azaindoles 117a—c under mild conditions, in high yields and
allowing a wide variety of functionality (Fig. 5).%° Larock
heteroannulation was largely used in different patents for
the construction of azaindole skeletons.*!

N
Z~N Z~N N~ N

H H
117¢ R' = -CH,OH, propyl

aryl, -CH,NHBoc

T

117a 117b

Figure 5. Structures of 117.

2.5.3. Other palladium-catalyzed cyclizations. A flexible
palladium-catalyzed 4-azaindole synthesis was investigated
by direct annulation of 3-amino-2-chloropyridines and
ketones (Scheme 25).*> An extensive screening of palladium
catalysts revealed that Pd(z-BusP), in combination with
a base such as K3PO, or AcOK and MgSO, as a water scav-
enger was able to catalyze annulation in DMA at 140 °C.
Addition of AcOH to the reaction medium allowed almost
quantitative conversion into the expected bicyclic system.
Thus, 2,6-dichloro-3-aminopyridine 118 led to the 5-chloro-
4-azaindole derivative 119 in 60% yield.

Me
CI<_N NEt
CIn_Ng_Cl NE, @ | S 2
| + O —_— _
7 NH, o) N ©
119

Scheme 25. Reagents and conditions: (a) Pd(t-BusP),, K3PO4, AcOH,
MgSO,, DMA, 140 °C, 16 h, 60%.

Ketone 120 could be converted into an imine 121/enamine
122 mixture (ratio 1:4) via condensation with 3-amino-2-
chloropyridine with azeotropic removal of water. The
desired azaindole 123 was then formed from 122 through an
intramolecular palladium coupling reaction (Scheme 26).4?

/I =z
o F Nl\N HN\N
a
|\ 4>|\ Cl +|\\CI
N~ N~ N~
120
F F

121 122

Scheme 26. Reagents and conditions: (a) 3-amino-2-chloropyridine, p-
TSA, toluene, reflux, 24 h; (b) PdCl,(PPhs),, DABCO, DMF, 120 °C, 4 h,
yields not given.

Palladium-catalyzed annulation of 3-iodopyridines 124a.b
or 4-iodopyridine 125 in the presence of Pd(OAc),
(5 mol %) and allyl acetate afforded the 5-azaindoles
126a,b or 6-azaindole 127 in fair yields (Scheme 27).4*

Azatryptophan derivatives have been recently prepared by
Zhu and Jia *° by a palladium-catalyzed annulation of o-halo-
anilines and aldehydes.
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Scheme 27. Reagents and conditions: (a) allyl acetate, Pd(OAc),, LiCl,
K,CO;, DMF, 120 °C, 13 h, 126a=56%, 126b=53%, 127=45%.

Under microwave-irradiation conditions, the Hegedus—
Mori-Heck reaction was extended to the synthesis of 4-,
5- and 6-azaindoles with good yields, reducing significantly
the reaction time and promoting the palladium coupling with
more traditional palladium catalysts.*®

2.5.4. Ruthenium approach. Ruthenium-catalyzed reduc-
tive annulation of nitroaromatics with alkynes was applied
to the preparation of the azaindole core.*’ Indoles can be
prepared, due to the ability of metals to induce C-N bond
formation combined with the reduction of nitroaromatic
compounds with carbon monoxide. In this paper, a sole ex-
ample was reported for the synthesis of azaindoles (Scheme
28). 2-Chloro-5-nitropyridine 83 was reacted with phenyl-
acetylene and ruthenium-complex catalyst in a stainless steel
reactor charged with 750 psi of carbon monoxide. Both
regioisomers were obtained, depending on the cyclization
process: 4-azaindole 128 and 6-azaindole 129 in a 3.5:1 ratio.

Ph Ph
cl |N\ a CI\ENI\g Clm
2, N
= _ N~

N N
NO, H H

83 128 129

Scheme 28. Reagents and conditions: (a) phenylacetylene, CO, [(n’-
CsMes)Ru(CO),],, molecular sieves 4 A, dioxane or benzene, 750 psi,
170 °C, 48-72 h, 128+129=53% (3.5:1).

The ruthenium-catalyzed cycloisomerization of azadienynes
was also investigated, allowing a general approach for the
access of 4-azaindoles (Scheme 29).*® Amide 130 was con-
verted into the corresponding alkynylimine 131 by treatment
with trifluoromethanesulfonic anhydride followed by copper
trimethylsilylacetylide. Compound 131 was subjected to
cycloisomerization in the presence of chlorocyclopentadi-
enylbis(triphenylphosphine)ruthenium [CpRu(PPh;),Cl] as
catalyst to afford 5-phenyl-4-azaindole 132. The combina-
tion of [CpRu(PPh3),Cl] (5 mol %), SPhos (5 mol %) and

TIIPS 'i'IPS
130 131 132

Scheme 29. Reagents and conditions: (a) (i) Tf,O, 2-chloropyridine,
CH,Cl,, —78 to 0°C, 5 min, (ii) copper trimethylsilylacetylide, THF,
—78 to 0 °C, 10 min, 82%; (b) K,COs, MeOH, 23 °C, 15 min, 94%; (c)
[CpRu(PPh;),Cl] (5 mol %), SPhos, NH,PF, toluene, 90 °C, 4 h, 65%.

ammonium hexafluorophosphate (1 equiv) in toluene
(0.2 M) at 90 °C was identified as the best conditions.

2.5.5. Zirconocene-mediated intermolecular coupling.
The zirconocene-mediated coupling reaction of organoni-
triles with alkynes, in which one Si-tethered diyne is coupled
in one pot with three molecules of nitrile promoted by a
low-valent zirconocene species, provided the 5-azaindole
derivatives (Scheme 30).*

Ar R1
A
/ Ar. r
) a ——SiMe, b N7\
Me,Si T cpzr= — | R?
N\ PN RPN
Ar P Ar
133 134 135 R = aryl, alkyl

Scheme 30. Reagents and conditions: (a) Cp,ZrBu,, 50 °C, 3 h; (b) (i)
RICN, 50 °C, 1 h, (ii) aqg NaHCO;, 46-81% (two steps).

When treated with the Negishi reagent (Cp,ZrBu,), the
bis(arylethynyl)dimethylsilane 133 reacted to afford a
zirconacyclobutene-silacyclobutene fused-ring intermediate
134. This organometallic compound was treated in the pres-
ence of R'CN, and then hydrolyzed with aqueous NaHCO;
to furnish 5-azaindoles 135 in 46-81% yields.

2.5.6. Titanium cyclization. The titanium cyclization
approach was applied to the preparation of 5-azaindole
derivatives (Scheme 31). Compound 136 treated with iso-
nicotinoyl chloride in CH,Cl, in the presence of pyridine af-
forded the oxoamide 137. Reductive coupling with TiCls/
Mg under the conditions described by Fiirstner and co-
workers>° gave the corresponding 5-azaindole 138.43

o}
NH; O
a NONH 0
S —— N
| B
N F P
N F
136

138

Scheme 31. Reagents and conditions: (a) isonicotinoyl chloride, pyridine,
CH,Cl,, 0°C to rt, 4 h; (b) TiCl;, Mg, pyridine, DME, reflux, 1 h, yields
not given.

2.5.7. Copper cyclization. Ene-carbamate 140 was synthe-
sized by a Horner—Wadsworth-Emmons reaction between
N-benzyloxycarbonyl-a-phosphonoglycine trimethyl ester
and 3,5-dibromo-4-formylpyridine 139 (Scheme 32). The
cyclization of 140 occurred in the presence of Cul and L-pro-
line to afford the 6-azaindole derivative 141 in 85% yield.”!
It should be noted that amino acids accelerated the Cu-medi-
ated self-coupling with aryl halides.
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Scheme 32. Reagents and conditions: (a) DBU, N-benzyloxycarbonyl-
a-phosphonoglycine trimethyl ester, CH,Cl,, rt, 2 h, 77%; (b) K,COs,
dioxane, L-proline, Cul, 100 °C, 24 h, 85%.

2.6. Dilithiation

3-Amino-4-picoline 142 was used as a building block for the
synthesis of 2-substituted 6-azaindoles (Scheme 33).7? First,
the dilithiation of pyridine was achieved in the presence of
3equiv of s-BuLi. The addition of ethyl benzoate at
—78 °C was essential to avoid the formation of N-(4-methyl-
pyridin-3-yl)benzamide derived from the lone nitrogen at-
tack on the ester. Compound 143 was obtained in 88%
yield. The scope of this reaction was explored by the use
of a wide range of aryl carboxylic esters, providing the cor-
responding 2-substituted 6-azaindoles with moderate-to-
excellent yields (33-88%). The challenge of this strategy
relies on the direct dilithiation of unprotected 3-amino-4-
picoline, which provided 6-azaindoles in a single step.?

Li
Me
/| a A b NN
Nx Li< | N N Z >N
NH, H H
142 143

Scheme 33. Reagents and conditions: (a) s-BuLi, THF, —78 °Ctort, 3 h; (b)
ethyl benzoate, —78 °C, 1 h, 88%.

2.7. Sommelet-Hauser rearrangement

Recently, Merck researchers enhanced the Sommelet—
Hauser-type rearrangement, expanding it to the construction
of 4-azaindoles 145 and 6-azaindoles 146 from 3-amino-
pyridines 144 (Scheme 34).5* 6-Azaindoles were prepared
using 2-substituted 3-aminopyridines as starting materials,
whereas the use of 2-unsubstituted 3-aminopyridines pro-
vided the corresponding 4-azaindoles exclusively (Table 1).

R? SMe SMe
NH, R2__N R2
N N N
I a2, mMe or Nl D—Me
RZ = R3 Z N = N
R3 A R! H
144 145 146

Scheme 34. Reagents and conditions: (a) (i) t-BuOCl (2 equiv), CH,Cl,,
—78 °C, 10-15 min, (ii) MeCOCH,SMe, —78 °C, 90 min, then Et3N,
—78 °C to rt.

Table 1. Preparation of 4-azaindoles 145a—d and 6-azaindoles 146e—f

Compd R' R? R? Temp (°C) 145 (%) 146 (%)
144a H —CH(CH,),CH- 0 91 —
144 H cl H —78 70 —
144c H CF; H -10 41 —
144d H H H —40 25 —
144¢ C H H —78 — 9%
1446 OMe H H —78 — 35

When a solution of 3-aminopyridines 144 was treated with
t-BuOCl followed by the addition of methylthioacetone
and Et3N, either the 4-azaindoles 145 or the 6-azaindoles
146 were isolated in moderate-to-good yields (25-94%).

The same reaction conditions were applied to 4-aminopyri-
dines to obtain the 5-azaindole core. In this case, 4-amino-
pyridines have been found unreactive, even at room
temperature.

2.8. Oxidation of o-hydroxyaminostyrylpyridines

The use of acetylenic aminopyridines for the synthesis of
substituted azaindoles was first reported by Xu and co-work-
ers.”™ The scope of the cyclization of o-hydroxyaminostyr-
ylpyridines was investigated and significantly improved by
Boehringer—Ingelheim researchers (Scheme 35).>> 3-Nitro-
2-styrylpyridine 147 was reduced in the presence of stan-
nous chloride, providing an intermediate hydroxylamine
148, which upon oxidation with DDQ was converted into
1-hydroxy-2-phenyl-4-azaindole 149 in 93% yield. Reduc-
tion of the hydroxylamine function afforded 2-phenyl-4-
azaindole 113 in 75% yield. The same pathway was applied
for the synthesis of 2-phenyl-5-azaindole 152 and 2-phenyl-
6-azaindole 143 from 150 and 151, respectively (58 and 72%
yield, three steps).

Ph Ph
% Z
N
N. b
NNz 2 s Noop m—Ph
l = l = Z N\
R1
147 148 149 R" = OH
il
113R"=H
Ph Ph
Z pZ
a,b,c X a,b,c
NO, N Ph NOz 8DC_ 43
| Z~N | _
Z N
150 152 151

Scheme 35. Reagents and conditions: (a) SnCl,-2H,0, AcONa-3H,O0,
THF/MeOH, 0 °C, 5 h, 148=98%; (b) DDQ, MeCN/H,0/AcOH, —10 °C,
20 min, 149=93%; (c) Fe, AcOH/EtOH, reflux, 45 min, 113=75%,
152=58%, 143=72% (three-step yield for the last two compounds).

2.9. Dipolar cycloaddition

A 1,3-dipolar cycloaddition reaction allowed access to the
unexpected 4-azaindoles (Scheme 36).°° Pyridinium N-
arylimide 153 reacted with fumaronitrile, providing the
cycloadduct 154 that underwent rearrangement in toluene
at reflux to provide the tetrahydropyrrolo[3,2-b]pyridine
155. Subsequent oxidation with DDQ afforded the 1,2,3-
trisubstituted 4-azaindole 156.

2.10. Other methods

2-Chloro-3-cyano-4-methylaminopyridine 157 was alkyl-
ated in the presence of ethyl bromoacetate and NaH
(Scheme 37). In the meantime, cyclization proceeded
smoothly, providing ethyl 3-amino-4-chloro-1-methyl-5-
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Scheme 36. Reagents and conditions: (a) fumaronitrile, Et,O, rt, 20 min,
53%; (b) toluene, reflux, 2 h, 28%; (c) DDQ, toluene, reflux, 2 h, 86%.

azaindole-2-carboxylate 158.57-% The 4-azaindole skeleton
was obtained in a different way.” First, the acetamidopyri-
dine N-oxide 159 was subjected to a cyanation procedure,
providing the intermediate 160. Subsequent alkylation and
cyclization furnished the 4-azaindole 161. Both 4- and 5-
azaindoles 158 and 161 were further engaged in the prepara-
tion of azaindolopyrimidines.

NHMe Cl NH,
P BN {
- | — CO,Et
N7 el Z N
Me
157 158
o NH,
I
/N+ O b /N CNO c N\ AN
U N S Wil W e
NN Me N" Me N
H H Ac
159 160 161

Scheme 37. Reagents and conditions: (a) ethyl bromoacetate, NaH, DMF,
40 °C, 61%; (b) Me,NCOCI, TMSCN, CH,Cl,, rt, 92%:; (c) NaH, ethyl bro-
moacetate, THF, 0 °C to rt, 88%.

The synthesis of 2-amino-3-cyano-4-azaindoles was initi-
ated by the reaction of 2-chloro-3-nitropyridine 162 with the
enolate of ethyl cyanoacetate to obtain 163 (Scheme 38).%°
Catalytic hydrogenation of the nitro group of 163 provided

CO,Et CO,Et
N_ _Cl
| N a | N\ CN b I N\ CN
P4 P4
NO, NO, ZNH,
162 163 164
CN CN
N N R
c,d A ef B )
o o 2 (T
Z =N Z>N R?
A H
165 166
/ /~ N\
NR'RZ= —N  — ij —N N ©
\ /

Scheme 38. Reagents and conditions: (a) ethyl cyanoacetate, +-BuOK,
i-PrOH, rt, 30 min then 80 °C, 6 h, 74%; (b) H,, Pd/C, EtOH, 50 psi, 3 h,
99%; (c) xylene, reflux, 20 h; (d) NaOH then CO,(g), 46% (two steps);
(e) POCls, 105 °C, 2 h, 45%; (f) R'R?NH, 110 °C, 18 h.

the 3-amino derivative 164. Thermal cyclization of 164, fol-
lowed by subsequent treatment with NaOH and CO,(g),
afforded the 2-hydroxyazaindole 165. A wide variety of 2-
amino-4-azaindoles were obtained by functionalization of
the C-2 position of 165. Treatment of 165 with phosphorus
oxychloride afforded the 2-chloro derivative. Displacement
of the halogen with primary and secondary amines gave the
corresponding 2-amino-4-azaindoles 166 in moderate yields.
These compounds were evaluated as a potential class of BK,
channel openers.

2-Methoxy-5-nitropyridine 167 underwent a vicarious nu-
cleophilic aromatic substitution of hydrogen upon treatment
with the anion of 4-chlorophenoxyacetonitrile, providing
the intermediate 168 in 86% yield (Scheme 39). Subsequent
hydrogenation of 168 in classical conditions afforded the cy-
clization, providing the 5-methoxy-4-azaindole 169 in 57%
yield.®!

MeO.__N MeO.__N MeO.__N

O, = OO =D
Z>No, Z>No, Z N
167 168 169

Scheme 39. Reagents and conditions: (a) t-BuOK, 4-chlorophenoxyaceto-
nitrile, THE, —10 °C, 3 h, 86%; (b) H,, Pd/C, EtOH, 57%.

The synthesis of the 5-azaindole phosphonic acid 173 was ac-
complished in ten steps from pyrrolidin-2-one 170 (Scheme
40).°> The pyridine nucleus was first prepared from
170 and the lateral side chain was then introduced in the C-
7 position to give 5-azaindoline 171. Pyrrole aromatization
of 171 was effective in the presence of Ce(NH4),(NO3)s
(CAN) to afford 5-azaindole 172 in 50% yield.

) e 3
=
O cl N
N
H H

X

PO3EL,
170 171

—z
N\ _/
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|
—z

FN\ 7
IZ__ ®

POzH, PO3Ety
173 172

Scheme 40. Reagents and conditions: (a) CAN, 50%; (b) H,, Pd/C, MeOH,
97%; (c) HC1, 94%.

3. Functionalization and reactivity of 4-, 5- and
6-azaindoles

3.1. Functionalization of N-1 position

3.1.1. N-Arylation. N-Arylation between the iodo derivative
174 and 6-azaindole 3 was performed in the presence of
Pd,(dba); and biphenyl-2-yl(dicyclohexyl)phosphine to
reach a new selective mGlu5 receptor antagonist 175
(Scheme 41).53
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Scheme 41. Reagents and conditions: (a) 3, --BuONa, biphenyl-2-yl(dicy-
clohexyl)phosphine, Pd,(dba);, dioxane, 110 °C, yield not given.

3.1.2. N-Alkylation. Novel inhibitors 177 of VEGFR-1/2
kinases were synthesized by N-alkylation of 5-azaindole 2
with chloroamide 176 in basic conditions (Scheme 42).%

Ar N
HN PN
O a
2+ —
0
Cl NH
176 177 A7

Scheme 42. Reagents and conditions: (a) K,CO3;, DMF, rt, 12 h, yield not
given.

The bromo derivative of compound 178 was coupled with
the anion of 4,6-dichloro-5-azaindole 179 providing the
corresponding ribonucleoside 180 (Scheme 43).9

Cl

PGO '
- OMe + | AN 0 _s“\\OPG
i3 cl /H MeO,,,_Lg

HO
178 179 180

OPG

Scheme 43. Reagents and conditions: (a) HBr, CH,Cl,, 0 °C, 30 min; (b)
NaH, NMP, rt, 1 h, 37% (two steps).

3.2. Functionalization of C-2 position

2-lodo-3-substituted azaindoles 182 were obtained by the
reaction of 2-trimethylsilyl-3-substituted azaindoles 181
with ICl at room temperature (Scheme 44). Palladium-
catalyzed coupling reactions (Suzuki, Heck, Stille reactions)

R2 R?
N™X N
(I\g—snvleg a &l
7 N = N
b K

were performed with miscellaneous 2-iodo-3-methyl-5-azain-
doles 182a and boronic acids, acrylates and organostannane
derivatives to give the 2-substituted 3-methyl-5-azaindoles
183. The catalytic system used for all the palladium-catalyzed
reactions was Pd(OAc), (5 mol %) in the presence of LiCl and
AcOKinDMFat 110 °C. The 2-substituted 5-azaindoles were
obtained in moderate-to-good yields (49-81%). No reaction
was observed when the N-free azaindole was used.®®

The synthesis of 2-aroylazaindoles as potential antimitotic
agents was explored (Scheme 45). 1-Benzenesulfonyl-5-
methoxy-4-azaindole 184 was lithiated in the C-2 position
and condensed with methoxybenzoyl chlorides, providing
the methoxyphenyl-(1-benzenesulfonyl-5-methoxy- 1 H-pyr-
rolo[3,2-b]pyridin-2-yl)methanones 185a—c.%’

R3
MeO_ _N R?
m ab_ MeO._Ng
Pz N | A\ R
SO,Ph Z H o)
184 185a R'= OMe, R2=R3 = H

185b R2=OMe, R'=R%=H
185¢ R' =R%®=0OMe, R2=H

Scheme 45. Reagents and conditions: (a) LDA, THF, 0 °C, 30 min; (b) 2-
methoxybenzoyl chloride or 3-methoxybenzoyl chloride or 2,4-dimethoxy-
benzoyl chloride, THF, —78 °C to 1t, overnight, 185a=44%, 185b=66%,
185¢=14%.

2-Lithio-1-benzenesulfonyl-5-azaindole was also prepared
from 1-benzenesulfonyl-5-azaindole 186 by the addition of
LDA. Trapping by various electrophiles [Me;SnCl, I,
Mel, DMF, B(OMe)s] afforded the 2-substituted 5-azain-
doles 187 in good yields (62-95%) (Scheme 46).%8

SO,Ph S0,Ph
186 187

Scheme 46. Reagents and conditions: (a) LDA, THF, —20 °C, 30 min; (b)
electrophile, THF, —20°C, E=SnMe;=95% (30 min), E=I=62%
(30 min), E=Me=86% (2 h), E=CHO=84% (3 h), E=B(OH),, 71% (5 h).

5-Methoxy-4-azaindole 169 was alkylated with 1,4-dibro-
mobutane by the use of sodium hydride in DMF. Formyla-
tion of 188 under Vilsmeier—-Haack conditions provided

R'=H, Me, Bn
R2 = Me, Ph, -CH,CH,N3

181 182
Me
NS P NOSTN Rz R'=Me,Bn
Z >N Z N R2 = Ph, Aryl, -CH=CHCO,Me
R1 -CH=CH2
182a 183

Scheme 44. Reagents and conditions: (a) ICl, CH,Cl,, 0 °C to rt, 1 h, 75-93%; (b) boronic acids, acrylates or organostannanes, Pd(OAc),, LiCl, AcOK, DMF,

110 °C, 49-81%.
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the desired substrate 189, which was subjected to the radical
cyclization (Scheme 47). The 6,7,8,9-tetrahydropyrido[3,2-
blindolizine ring system 190 was obtained in 65% yield.®”

MeO._ _N
MeO IN\ \ a m b
H \‘t\
)3
169 188 Br
CHO Meo. N CHO
MeO |N\ { c e | S\
A ~N Z N
s
189 Br 190

Scheme 47. Reagents and conditions: (a) 1,4-dibromobutane, NaH, DMF,
rt, 79%; (b) POCls, DMF, rt, 91%; (c) BusSnH, AIBN, toluene, reflux, 65%.

In the same paper,®® the 1-[3-(benzyloxy)propyl]pyrrolopyr-
idine 191 was oxidized by an excess of pyridinium bromide
perbromide (PBPB) in #~-BuOH to furnish the dibromide 192
in 94% yield (Scheme 48). The tribromo derivative 193 was
prepared in 50% yield when 191 (by-product 194=25%)
was reacted with 4 equiv of bromine in ~-BuOH and H,O.

Br
MeO. N N
2 |
MeO\ENp / T g NAN
Z N 192 \\\\
(CH,)5-0Bn OBn
191 Br
\ b MeO._N Br
~N
| 0
RN
193 R' =Br \\\\OBn
194R'=H

Scheme 48. Reagents and conditions: (a) PBPB, +-BuOH, rt, 94%; (b) Br,,
t+-BuOH/H,O0, 1t, 193=50%, 194=25%.

3.3. Functionalization of C-3 position

3.3.1. Regioselective halogenation. A mild and efficient
synthesis of 2-substituted 3-halo-6-azaindoles was
developed for 6-azaindole systems (Scheme 49).7° The 2-
(2-furyl)-6-azaindole 195 was a challenging substrate for se-
lective halogenation, as conventional bromination methods
led to various mixtures of mono-and dibrominated com-
pounds at the C-3 position and in the C-1 position of the furan
ring. Side reactions were minimized by use of CuBr, or
CuCl, (3 equiv), which provided the 3-halo-6-azaindoles
196a,b with excellent yields (85-90%). This halogenation
was extended to 2-methyl-, 2-phenyl-, 2-(thien-3-yl)-, 2-
phenylethyl- and 2-adamantyl-6-azaindoles and pointed out
the regioselectivity and high yields of this method (74-90%).

X
TN 2 O N/ 196a X=bBr
N~ o N~y o— 196b X=Cl
H H
195

Scheme 49. Reagents and conditions: (a) CuBr, or CuCl,, MeCN, rt,
85-90%.

This regioselective bromination was recently extended by
the same authors to the substrates 1-3 and 2-substituted
4- and 5-azaindoles 197a,b (Fig. 6).”! 3-Iodo-5-azaindole
198 was also prepared in 91% yield by treatment of 2 with
KOH in DMF.®8

I

WIS NN
| R |

Z~N Z N

H H

1 198
R" = alkyl, phenyl

197a Y=N, W=CH
197b Y=CH, W=N

Figure 6. Compounds 197 and 198.

Iodination of 199 on the C-3 position in the presence of NIS
afforded almost quantitatively compound 200. This interme-
diate was further functionalized via a Suzuki palladium-
catalyzed coupling reaction. Using phenylboronic acid
and 4-methoxyphenylboronic acid, the 3-arylazaindoles
201a,b were obtained, respectively, in 26 and 71% yield
(Scheme 50).%!

RZ

Me;Si = Me;Si
—\_o N\ ) xo \
| Yy — | T
Z N A ~N
H H
199 R'=H
a 201a R?=H
200R" =1 201b R?=0OMe

Scheme 50. Reagents and conditions: (a) NIS, THF, rt, 2 h, 97%; (b) 4-R%-
ArB(OH),, PdCl,(dppf), 2N Na,COs, EtOH, reflux, 3h, 201a=26%,
201b=71%.

3.3.2. Regioselective acylation. In pursuit of a Friedel-
Crafts-type approach that relies upon activation of the
electrophile, a convenient acylation of azaindoles 1-3 was
reported by Wang and co-workers.”> As example, com-
pounds 202-204 were prepared from 1-3 in good yields
(Scheme 51). It was found that a minimum of 3 equiv of
AlCl; in CH,Cl, was required to achieve the best results.
Use of additional AICI; did not improve the yield further.
The requirement for greater-than-stoichiometric quantities
of AICI; could be interpreted by the formation of complex
205 (Fig. 7). The first equivalent of AlCl; coordinates with
the pyridine nitrogen atom, resulting in a decrease of the
pK. of the pyrrole NH. Reaction of the second equivalent
of AICl; may lead to deprotonation and the formation of
an aluminium salt. Finally, the third equivalent of AlCl;
forms an ‘ate’ complex with the acyl chloride, the active
intermediate engaged for the Friedel-Crafts reaction.

[0}
W 202 W,Y=CH,Z=N
13 a m TN\ 203 W,Z=CH,Y=N
Z~N 204 W=N,Y,Z=CH

H

Scheme 51. Reagents and conditions: (a) AlCl; (5 equiv), CH,Cl,, rt, 1 h
then acetyl chloride, rt, 8 h, 202=63%, 203=94%, 204=70%.
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cl. /CIO
Al n,
7\ C
A cl Cl ™R
Cl
o A AC
Cl
205

Figure 7. Complex 205.

3.3.3. Stannylation followed by Stille coupling. Bromina-
tion of azaindoles 1-3 with Br, in CCly produced the 3-bro-
moazaindoles, which were immediately converted into their
N-Boc derivatives 206a—c by treatment with Boc,O in the
presence of DMAP (Scheme 52). Lithium/halogen exchange
in the presence of n-BuLi and TMEDA generated the lithi-
ated species, which upon immediate reaction with Bu3SnCl
furnished the corresponding organostannanes 207a—c in 14—
20% yield. These latter compounds were engaged in a Stille
palladium-catalyzed coupling reaction in the presence of
triflate 208,72 PdCl,(PPhs), and LiCl, providing the 2-azain-
dol-3-yl-dipyridodiazepinones 209a—c in low yield. The
same synthetic strategy was applied to 4- and 5-azaindoles
within the same range of yields. The low isolated yields ob-
served at each stage of the synthesis are due to significant
difficulties encountered during the purifications.”

Br SnBug
a,b c
SN OR RO
N N

\ \

Boc Boc
206a 4-aza 207a 4-aza
206b 5-aza 207b 5-aza
206¢ 6-aza 207c 6-aza

m
TfO
N‘
209a 4-aza
209b 5-aza
209c 6-aza

Scheme 52. Reagents and conditions: (a) Br,, CCly, i-Pr,NEt, 0 °C; (b)
Boc,O, DMAP, dioxane, 206a=76%, 206b=42%, 206c=42% two steps;
(c) (i) n-BuLi, TMEDA, THF, —78 °C, 15 min, (ii) Bu3SnCl, —78 °C to
rt, 2 h, 207a=18%, 207b=14%, 207¢=20%; (d) triflate 208, PdCl,(PPhs),,
LiCl, DMF, 110 °C, overnight, 209a=5%, 209b=11%, 209c=14%.

Stannylation of 3-iodo-5-azaindole derivatives from com-
pound 198 was described by Mérour and co-workers
(Scheme 53).°% 3-lodo-5-azaindole 198 was first subjected

SnBuj
.t CE% &
210aR = Boc 211aR = Boc
210b R = SO,Ph 211b R = SO,Ph
210c R = MOM 211c R = MOM

Scheme 53. Reagents and conditions: (a) Boc,O, DMAP, THF, rt, 16 h,
210a=quant; NaH, PhSO,Cl, THF, 0°C to rt, 2 h, 210b=78%; NaH,
THEF, 0°C to rt, 15 min, 210¢=77%; (b) PdCl,(PPhs),, LiCl, MesSn,,
THE, reflux, 2 h, 211a=90%, 211b=97%, 211¢=95%.

to N-protection to afford compounds 210a—c in good yields.
Reaction of 210a—c with hexamethylditin in the presence of
PdCl,(PPh;3), and LiCl gave organostannanes 211a—c in
excellent yields. Organostannane 211a was also prepared
in 93% yield by a lithium/halogen exchange of 210a and
addition of trimethyltin chloride.

3.4. Functionalization of pyridine ring

Dimers linked by an alkoxy spacer have been prepared from
a 5-methoxy-4-azaindole 184 (Scheme 54).”° Subsequent
treatment of 184 with AlCl; led to the pyridone 212, which
was subjected to an alkylation procedure with an alkyl dibro-
mide in the presence of potassium carbonate in DMF, provid-
ing a mixture of the expected O-alkylated compounds 213a—c
in moderate yields and N-alkylated compounds 214a—c in
lower yields. Compound 212 was condensed with bromo-
alkoxy derivatives 213a—c leading to the bis-4-azaindoles
215a—c. After a deprotection—protection sequence to afford
the N-position protected with a methyl group, a lateral side
chain was introduced in the C-3 position by formylation un-
der Vilsmeier—Haack conditions. The bis-aldehydes were en-
gaged in a Henry reaction with nitromethane followed by
reduction with NaBH, and hydrogenation over Raney nickel.
Final acetylation gave the desired derivatives 216a—c.

CQU?H

SO,Ph S0,Ph
184 212
( Br
B O.__N "
"“n BB . O N
\ NS N
SO,Ph \
SO,Ph
213an=4 214an=4
213bn=5 214bn=5
213cn=6 214cn=6
N._Oy +O.__N
C
213a¢c —~ ¢ | | th | TN
NTX Z N
PhO,S SO.Ph
215an=4,215bn=5215cn=6
1d,e,f.g, h i, j
AcHN NHAc
N.__Oy ,O.__N
74 - | Mn | N AN
NTX Z N
Me’ Me

216an=4,216bn=5,216cn =6

Scheme 54. Reagents and conditions: (a) AlCl;, CH,Cl,, reflux, 12 h, 83%;
(b) Br—(CH,),—Br, K,CO3;, DMF, rt, 12h, 213a=54%, 213b=54%,
213¢=53%, 214a=23%, 214b=24%, 214¢=29%; (c) 212, K,CO;, DMF,
rt, 24 h, 215a=57%, 215b=60%, 215¢=50%; (d) 2.5 M NaOH, MeOH,
CH,Cl,, reflux, 12 h; (e) NaH, Mel, DMF, rt, 4 h; (f) POCl;, DMF, rt, 2 h;
(g) MeNO,, NH,OAc, 120 °C, 4 h; (h) i-PrOH, CHCl3, SiO,, NaBHy, rt,
20 min; (i) H,, Raney Ni, MeOH, 60 °C, 12 h; (j) Ac,0O, CH,Cl,, pyridine,
rt, 12 h, 216a=11%, 216b=8%, 216¢=6% (six steps).

4. Design of 4-, 5- and 6-azaindoles as biological targets

The diversity of biological targets is a good criterion of inter-
est in medicinal chemistry of the azaindole core. Numerous
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217 Factor Xa inhibitor 218 nicotinic acetylcholine

receptor agonist
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Figure 8. Compounds 217-229.

compounds are described in the literature,’*%* and a few

examples are given in Figure 8 (217,7¢ 218,77 219,78 220,”°
221,50 222,81 223 52 224.%° 225 % 22653 227%° 228" and
22035),

5. Conclusions
In a similar manner to the 7-azaindole field, the expanding

use of 4-, 5- and 6-azaindoles in medicinal chemistry makes
them attractive tools for the drug discovery. The main efforts

219 protein kinase inhibitor

226 cytokine inhibitor
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o
I
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\ 7/

=z
ff/\
P4

OMe
220 TGF-B inhibitor

223 IKK beta inhibitor 224 5-HT,p receptor antagonist

N-OEt
/N _N H
=t .
=N
N o N
O N

N(Me)2

227 antibacterial agent

229 cathepsin S inhibitor

have been devoted to new synthetic methods, extending
the scope of the preparation of 4-, 5- and 6-azaindoles, as
well as functionalization of the nuclei.
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